
RESEARCH ARTICLE

The neighborhood built environment and

COVID-19 hospitalizations

Alessandro RigolonID
1*, Jeremy Németh2, Brenn Anderson-Gregson2, Ana Rae Miller2,

Priyanka deSouza2, Brian Montague3, Cory Hussain3,4, Kristine M. Erlandson3, Sarah

E. Rowan3,4

1 Department of City and Metropolitan Planning, The University of Utah, Salt Lake City, Utah, United States

of America, 2 Department of Urban and Regional Planning, University of Colorado Denver, Denver,

Colorado, United States of America, 3 Department of Medicine, Division of Infectious Diseases, University of

Colorado Anschutz Medical Campus, Denver, Colorado, United States of America, 4 Division of Infectious

Diseases, Denver Health and Hospital Authority, Denver, Colorado, United States of America

* alessandro.rigolon@utah.edu

Abstract

Research on the associations between the built environment and COVID-19 outcomes has

mostly focused on incidence and mortality. Also, few studies on the built environment and

COVID-19 have controlled for individual-level characteristics across large samples. In this

study, we examine whether neighborhood built environment characteristics are associated

with hospitalization in a cohort of 18,042 individuals who tested positive for SARS-CoV-2

between May and December 2020 in the Denver metropolitan area, USA. We use Poisson

models with robust standard errors that control for spatial dependence and several individ-

ual-level demographic characteristics and comorbidity conditions. In multivariate models,

we find that among individuals with SARS-CoV-2 infection, those living in multi-family hous-

ing units and/or in places with higher particulate matter (PM2.5) have a higher incident rate

ratio (IRR) of hospitalization. We also find that higher walkability, higher bikeability, and

lower public transit access are linked to a lower IRR of hospitalization. In multivariate mod-

els, we did not find associations between green space measures and the IRR of hospitaliza-

tion. Results for non-Hispanic white and Latinx individuals highlight substantial differences:

higher PM2.5 levels have stronger positive associations with the IRR of hospitalization for

Latinx individuals, and density and overcrowding show stronger associations for non-His-

panic white individuals. Our results show that the neighborhood built environment might

pose an independent risk for COVID-19 hospitalization. Our results may inform public health

and urban planning initiatives to lower the risk of hospitalization linked to COVID-19 and

other respiratory pathogens.

1. Introduction

The COVID-19 pandemic has caused the deaths of over 6 million people worldwide including

more than one million deaths in the United States [1]. Initially, hospitals were overwhelmed

with critically ill patients, and now, even among those who did not experience severe illness,
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long-term symptoms following COVID-19 have been unusually common [2,3]. Beyond direct

health effects, the pandemic caused economic devastation and educational setbacks for chil-

dren [4,5]. Despite the availability of vaccines, the pandemic may persist for years given the

variability in vaccine uptake, viral variants, and relaxed prevention measures like masking [6].

In addressing our response to the current pandemic with the development of new variants and

as we look to mitigate harm in future pandemics, it is important to understand factors that are

associated with not only the risk of acquiring SARS-CoV-2 but also the risk of developing

severe COVID-19 disease.

Numerous studies have demonstrated associations between increased COVID-19 morbid-

ity and mortality and biological factors such as age, body mass index (BMI), and certain co-

morbidities [7,8]. Less is known, however, about the association of non-biological risk factors,

such as components of the built environment, with the COVID-19 disease burden. Although

the effects of place on wealth, social mobility, and some chronic conditions like cardiovascular

disease, obesity, and asthma are fairly well established [9–11], fewer studies have focused on

the associations between the built environment and communicable diseases, particularly in

relation to disease severity. Long-term exposure to higher levels of fine particulate matter

(especially the concentration of particles having aerodynamic diameters < 2.5 μm: PM2.5) [12–

15] and lower densities of green spaces [16–21] are predictors of COVID-19-related mortality

and hospitalization risks, whereas studies focused on the impact of population density have

yielded mixed results. Higher density has been associated with both higher COVID-19 rates

and mortality in some studies [22–31]; others have found that higher population density was

protective against SARS-CoV-2 incidence and COVID-19-related mortality [32–35].

Parsing out complicated overlapping risks such as socioeconomic status, age, comorbidities,

environmental factors, and the impact of the built environment on COVID-19 disease out-

comes is challenging. Most published studies of the environmental correlates of COVID-19

severity have not controlled for individual-level risk factors because they used geographies like

counties or census tracts as their units of analysis (see [17,21–23,31,33,36–39]). Also, the effects

of multiple different overlapping environmental exposures have not been critically evaluated

in studies with a large sample, as most investigations have focused on one built environment

domain at a time, such as green space (e.g., [17,36,40]) or density (e.g., [23,31,33]). Addition-

ally, most work in this arena has looked at infection rates and mortality rather than hospitaliza-

tions, a proxy for more severe illness. Further, because people of color in the United States

have experience disproportionately high rates of COVID-19 hospitalizations [41], it is impor-

tant to know whether the associations between the neighborhood built environment and hos-

pitalizations vary by race/ethnicity.

To address these gaps, we developed an extensive dataset with a variety of patient-level

demographic and clinical characteristics for all persons diagnosed with SARS-CoV-2 through

two large hospital systems in the Denver, Colorado, USA metropolitan area in 2020. We

sought to understand 1) to what extent the neighborhood built environment independently pre-
dicted COVID-19 hospitalizations, and 2) for which racial/ethnic groups the neighborhood built
environment matters the most in predicting COVID-19 hospitalizations.

2. Materials and methods

2.1. Study design and setting

We conducted an observational, retrospective analysis of all cases of SARS-CoV-2 diagnosed

within the University of Colorado Health (UCH) and Denver Health (DH) healthcare systems

from May 1, 2020, through December 15, 2020 (before vaccines became extensively available).

We excluded cases from March and April 2020 due to limited testing for mild illness during
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the earliest months of the pandemic, which inflated the hospitalization rate (60% of those who

tested positive were hospitalized in March 2020, as shown in our data).

UCH includes a network of hospitals and facilities throughout Colorado including the Uni-

versity of Colorado Hospital, a tertiary care center associated with the University of Colorado

School of Medicine. DH is an integrated safety net healthcare system that includes an acute

care hospital, 9 federally qualified health centers, and 17 school-based clinics [42]. UCH serves

patients with a variety of payer sources while the majority of patients who receive care through

DH are covered by Medicaid or uninsured. Overall, around 6.5% of those with a positive test

in the UCH and DH systems were uninsured at the time of the study.

The analysis was limited to individuals seeking care through UCH and DH within the

seven traditional counties of the Denver metropolitan area (Adams, Arapahoe, Boulder,

Broomfield, Denver, Douglas, and Jefferson), plus the urbanized parts of Weld County (see

Fig 1) [43]. The Denver metropolitan area is a highly urbanized region along the Colorado

“Front Range” and has experienced rapid population growth over the past decade [44]. During

that time, it has undergone significant population shifts characterized by densification and

gentrification of the urban core and increased concentrations of lower-income people of color

in some suburban communities [45].

We queried electronic health records (EHRs) from the two institutions for evidence of a

positive SARS-CoV-2 polymerase chain reaction test result for individuals aged 18–100 years

during the study period. Demographic variables extracted from the EHR included date of

birth, race, ethnicity, gender, and home address at the time of the positive test. We excluded

records with missing gender, race or ethnicity, or address (including homeless, Post Office

Box only, or the address listed was for a shelter, jail, or congregate care facility such as a nurs-

ing home or rehabilitation facility). We excluded these records because environmental vari-

ables either could not be coded, as in the case of homelessness or Post Office boxes, or did not

reflect the person’s interaction with the built environment, as in the case of persons in jails or

congregate care facilities. We extracted health variables from disease registries and interna-

tional classification of diseases (ICD) codes associated with the individual’s medical record.

These included diabetes, hypertension, chronic pulmonary diseases (asthma and chronic

obstructive pulmonary disease), HIV, and chronic kidney diseases. We included chronic liver

disease, cardiovascular disease, pregnancy, cancer, and immunocompromised states in the

query but chart reviews revealed inconsistent reporting and coding of these conditions; there-

fore, they were not included in the final dataset. Additional variables extracted from the EHR

included current tobacco use, height, weight, and body mass index. We chose demographic

variables and conditions based on current understanding of factors associated with COVID-19

disease severity [46,47].

When possible, we individually reviewed and updated records containing unlikely BMI val-

ues with additional data from chart review. We calculated missing BMI values for those

patients with an available weight using the median observed height value for their gender and

reported race/ethnicity. Medians heights from our study cohort were compared with national

data and determined to be within 2 centimeters for all subsets [48]. We did not impute missing

values for weights given the larger variability in possible weights and greater impact on BMI

results. Individuals without documented BMIs or weights were thus excluded from the analy-

ses. We calculated BMI values from the most recent height and weight data and compared

these to extracted BMI values with additional chart reviews conducted in cases of discrepan-

cies. The final BMI value assigned to each record in the dataset was the value obtained from

measurements taken closest to the time of the positive SARS-CoV-2 test.

We then queried the EHRs for evidence of hospital admission at DH or UCH within two

weeks of the positive SARS-CoV-2 test for individuals in the cohort. The reason for
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hospitalization was not routinely available, and therefore individuals could have been hospital-

ized for COVID-19 or unrelated reasons. In the case of multiple positive SARS-CoV-2 tests,

we included only the hospitalization status associated with the initial positive test in the analy-

sis. We did so to avoid biasing the results by including the same individual multiple times. In

some cases, a patient may have been hospitalized and had multiple tests sent from different

anatomic sites (e.g., nasopharyngeal, saliva) or repeated multiple times during the hospitaliza-

tion due to admission requirements of long term care facilities. In other cases, individuals

Fig 1. Density of SARS-CoV-2 cases and hospitalizations in the study area (Denver metropolitan area) and the City of Denver.

https://doi.org/10.1371/journal.pone.0286119.g001
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were discharged and readmitted in the next few weeks for unrelated issues, yet because of uni-

versal screening for SARS-CoV-2 at that point in the pandemic, still had positive results when

admitted. Finally, individuals who had multiple positive tests several months apart are likely to

have other predisposing factors to illness and that could also bias the results if they were

included more than once.

2.2. Neighborhood built environment

We created a four-pronged classification of neighborhood built environment features based

on our critical reading of recent reviews and theoretical articles about COVID-19 and the built

environment [49–53] and our evaluation of the current empirical research on this topic. The

four domains we focused on were population density and crowding (e.g., living in an apart-

ment), environmental hazards (e.g., PM2.5, proximity to a highway), environmental amenities

(e.g., parks access, park acreage), and mobility options (e.g., transit access, cycling

infrastructure).

We recoded home addresses for individuals in the cohort to geographical coordinates using

the Texas A&M University (TAMU) Geocoder (version 4.01, College Station, TX) and the

Bing Maps Geocoder (version 2.0, Redmond, WA). Prior use of geocoders has been associated

with the inadvertent sharing of protected health information (PHI) [54]. To ensure this did

not occur, we uploaded addresses to the geocoders in small batches (less than 2,500 cases) on

different days and used various internet protocol (IP) addresses to do so. Additionally, we only

uploaded street addresses and unique identifiers, and we deleted addresses from the geocoders

after each use. Further, the TAMU geocoder, which is the main service we used, deletes all its

data every seven days [55]. If the addresses were accessed while they were temporarily stored

in the geocoders, they would not be traceable to this study because the IP addresses from

which the data was uploaded varied and are not clearly linked to the two hospital systems.

Therefore, there would be no evidence that an individual with a given street address was asso-

ciated with this study cohort.

We then used Python (version 3.6.1) to clean several variables describing the neighborhood

built environment and linked them to the residential geographic coordinates using ArcGIS

Pro (version 2.7, Redlands, CA). We list descriptions of these variables and their associated

data sources in Table 1. We chose the specific variables for each neighborhood built environ-

ment domain based on data availability for the entire metro Denver region, alignment with

variables used in previous studies on associations between the built environment and COVID-

19 outcomes, and from preliminary tests to assess multicollinearity issues. We removed the

population density variable due to strong multicollinearity with residential density (Pearson’s

r = 0.95), and the Social Vulnerability Index (SVI) variable due to multicollinearity with per-

cent housing burdened households (r = 0.66), percent essential workers (r = 0.67), and several

other variables. In preliminary multivariate models, population density and SVI had Variance

Inflation Factors above 4 [56]. For variables describing distances to specific locations (e.g., a

park or a highway), we calculated the distance between home addresses and such locations.

For other variables (e.g., residential density), we attributed the values of the census block

groups within which the residential addresses were located (see Table 1 for more details).

We also considered potential demographic neighborhood-level confounding factors that

have been or could be associated with increased risk for severe COVID-19 (Table 1). These

included the percentage of housing burdened households, the percentage of “essential work-

ers,” and the percentage of “essential workers” commuting via transit in a census block group

[64–67].
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2.3. Outcome

The outcome of interest in the study was whether individuals who tested positive for SARS-

CoV-2 were hospitalized. We analyzed the association between factors in the built environ-

ment around one’s home address and hospitalization in the entire cohort and in sub-cohort of

individuals who identified as Hispanic/Latinx (all races) and those who identified as non-His-

panic white.

Table 1. Independent variables describing the neighborhood built environment and neighborhood-level control variables.

Variable name Description Data source Geography

Neighborhood built environment: Density and crowding
Residential density Households per square kilometer area American Community Survey (ACS)

Table B11012 [57]

Census block group

Percent overcrowding Ratio of households (renter and owner occupied) with greater

than 1 person per room*
ACS Table B25014 [57] Census block group

Living in a multi-family

building

Binary variable based on presence of a unit number in the

provided address

UCH and DH Datasets Individual-level

Percent multi-family units Ratio of residential buildings that are not single units, mobile

homes, boats, or RVs*
ACS Table B25024 [57] Census block group

Neighborhood built environment: Environmental hazards
Particulate Matter 2.5 Level

(PM2.5)

2016 Annual Average μg/m3 of PM2.5 (particulate matter) 2020 Environmental Protection Agency

(EPA) Environmental Justice Screen [58]

Census block group

Proximity to a highway Euclidean distance between home address and any highway in

the region is less than 0.25 mile (400 m)

Colorado Department of Transportation

Highway Dataset [59]

Individual-level,

Euclidean distance-

based

Neighborhood built environment: Environmental amenities
Normalized Difference

Vegetation Index greenness

(NDVI)

Raw NDVI (Normalized Difference Vegetation Index) raster

value

United States Geological Survey (USGS)

eMODIS NDVI Raster [60]

Individual-level,

raster value

Park access Home address located within 0.5 miles (800 m) from the nearest

park centroid; distance calculated based on street network

Primary: Denver Regional Council of

Governments (DRCOG) Parks and Open

Space Dataset [61]

Individual-level,

network distance-

based

Park acreage Area of parks (square kilometers) intersecting with a .25 mile

(400 m) network service shed around each address

Primary: DRCOG Parks and Open Space

Dataset [61]

Individual-level,

network distance-

based

Neighborhood built environment: Mobility
Walk Score 1 Each address was searched and the walk, bike, and transit scores

were recorded. For addresses that did not return results, a raster

was interpolated based on the surrounding data points and the

missing values were assigned based on location.

Walk Score 1 Database [62] Individual level

Bike Score 1 Walk Score 1 Database [62] Individual level

Transit Score 1 Walk Score 1 Database [62] Individual level

Potential confounders
Percent housing burdened

households

Ratio of households paying greater than 30% of their income on

rent*
ACS Table B25074 [57] Census block group

Percent essential workers Industries were broken down as essential or non-essential based

on the US Dept. of Homeland Security Cybersecurity &

Infrastructure Security Agency (CISA) guidelines on essential

jobs.*

ACS Table B08126 for the data [57]. For the

definition of essential workers [63]

Census block group

Percent essential workers

commuting via transit

Using the same definition of essential workers as above, ratio of

essential workers commuting to work using transit*
ACS Table B08126 [57] Census block group

Notes: All ACS data are from the 2015–2019 American Community Survey, 5-year estimates, for census block groups.

*We expressed all percent variables as ratios (e.g., sum of essential workers divided by total number of workers) and thus they range from 0 to 1. We calculated the

variables for which geography is described as “Individual level” based on a person’s address (e.g., whether their address is within a 0.5 miles from a park). We calculated

the variables for which geography is listed as “Census block group” based on values for the entire census block group in which the individual’s address is located (e.g.,

the residential density of the block group where one lives).

https://doi.org/10.1371/journal.pone.0286119.t001
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2.4. Statistical analysis

We used basic descriptive statistics to characterize the cohorts of SARS-CoV-2 positive

patients diagnosed through UCH and DH. We calculated all descriptive statistics, univariate

(unadjusted), and multivariate (adjusted) models in R (version 4.0, Vienna, Austria). See the

code here: https://github.com/ucd-brenn/CODEN.

For our regression analyses, we considered various options given our binary outcome vari-

able (being hospitalized or not). In large cohort studies where the outcome variable is com-

mon, such as our study, logistic regression models tend to overestimate incident rate ratios

[68]. Thus, we evaluated alternatives such as Poisson and negative binomial models, both

options in studies with large cohorts and common binary outcome variables [68]. To do so, we

first conducted a dispersion test for the outcome variable (hospitalization), showing that the

mean (0.29) is slightly larger than the variance (0.20). Poisson distributions describe cases

wherein the mean is equal to the variance, whereas, in negative binomial distributions, the var-

iance is larger than the mean. Then, we used the odTest function in the pscl package to “to test

the null hypothesis that the restriction implicit in the Poisson model is true” ([69], p. 45). This

likelihood ratio test resulted in a Chi-Square Test Statistic = -0.286 and p-value = 0.5, lending

support for the null hypothesis and suggesting that Poisson regression is preferable. Because

our data are under-dispersed relative to the Poisson distribution, we ran Poisson regressions

with robust standard errors [68].

We first ran univariate Poisson regressions with robust standard errors to test associations of

individual variables with the incident rate ratio (IRR) of hospitalization. We selected variables

for multivariate models from relevant literature and display these in Table 1, and we chose to

retain independent variables not associated with the dependent variable to account for the pos-

sible presence of confounding and suppressor variables [70]. Before running the univariate and

multivariate regressions, we standardized the continuous variables listed in Table 1.

In multivariate Poisson regressions with robust standard errors, we evaluated the neighbor-

hood built environment factors associated with the IRR of hospitalization among those who

tested positive for SARS-CoV-2, while controlling for individual and neighborhood demo-

graphics as well as individual comorbidities. We performed one main analysis for all individu-

als with complete data, and then two subgroup analyses for non-Hispanic white individuals,

and Latinx individuals. We did not compute models for other racial/ethnic groups (e.g., non-

Hispanic Black people) given the small size of their subsample in our cohort compared to

Latinx and non-Hispanic white people. We were particularly interested in understanding how

associations between neighborhood built environment and IRRs of hospitalization varied by

race/ethnicity because people of color in the U.S. have higher rates of COVID-19 hospitaliza-

tion [41] and live in places with disproportionately high exposures to environmental hazards,

such as air pollution [71].

To test for potential spatial autocorrelation in the model’s residuals of the Poisson regres-

sion with robust standard errors, we computed global Moran’s Is for the model residuals. We

used the moran.test function in R’s spdep package to calculate Moran’s I with a distance-based

spatial matrix that considers the four closest neighbors to each home address of the patients in

our sample with complete records. We created three different spatial matrices for the entire

sample and the two subsamples. Moran’s I tests were significant for the entire sample, the

Latinx subsample, and the non-Hispanic white subsample. Thus, we ran spatial filtering mod-

els using the ME function in R’s spdep package. Spatial filtering models calculate eigenvectors

intended to remove spatial autocorrelations [72]. Through a stepwise process, some eigenvec-

tors are included in the model, and their inclusion reduces the p-value of Moran’s I of the

model’s residual below 0.05.
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2.5. IRB approval

The Institutional Review Board at The University of Utah and the Colorado Multiple Institu-

tional Review Board (COMIRB) approved the study. We utilized research use agreements for

data sharing across the authors’ institutions. COMIRB, which oversees the two hospital sys-

tems in this study, waived informed consent for this study due to the retrospective nature of

the research: Obtaining informed consent was not feasible and the risk for adverse events was

considered extremely low. Names and medical record numbers were removed from the dataset

prior to analysis and dates of birth were converted to years of age at the time of the positive

test, but other PHI elements that were considered critical to the study were retained. These

included the home address and year of testing and hospitalization.

3. Results

3.1. Descriptive statistics

From May 1 to December 31, 2020, 23,471 adults living in the Denver metropolitan area were

diagnosed with SARS-CoV-2 infection through UCH and DH. Of those, we removed 163 rec-

ords due to incomplete/missing addresses. We imputed missing heights for 159 individuals to

calculate BMI. Of the remaining 23,308 records, we removed 4,101 individuals due to missing

weight data since BMI could not be calculated. We removed an additional 532 records due to

missing race and ethnicity data. Further, we excluded 557 records due to lack of available tran-

sit, bike, or walk scores, and 76 records due to lack of available data from the U.S. Census

Bureau (e.g., housing or employment data). The final dataset included 18,042 individuals. See

S1 Fig in the S1 Appendix for a flowchart describing the selection of patients based on data

availability.

Table 2 lists the characteristics of the final cohort. Fig 1 shows the geographic distribution

of all cases (1a) and hospitalized cases (1b). Overall, 5,239 individuals (29.03%) were hospital-

ized within 2 weeks of a positive SARS-CoV-2 test result. Compared to those who were not

hospitalized, hospitalized individuals had higher BMI, were older, were more often Latinx or

non-Hispanic Black, and had a higher prevalence of the included medical conditions.

Table 3 summarizes the descriptive statistics for the neighborhood built environments. For

example, 24.6% of individuals in the sample live in a multi-family housing unit. Nearly half

(47.4%) of the cohort lived within a half-mile of a park, and scores for walkability, bikeability,

and transit access varied widely. See S1 and S2 Tables in the S1 Appendix for additional

details.

3.2. Associations between neighborhood built environment and COVID-19

hospitalizations

In univariate analyses, the four domains of neighborhood built environments were signifi-

cantly associated with the incident rate ratio (IRR) of being hospitalized (Table 4). The IRR

was higher for those living in neighborhoods with larger shares of overcrowded households

and for those living in a multi-family building (density and crowding). Also, the IRR of hospi-

talization was higher for people living in neighborhoods with higher PM2.5 levels (environ-

mental hazards) and lower for people living in neighborhoods with higher overall greenness,

measured through NDVI (environmental amenities). Furthermore, the IRR of hospitalization

was higher for people living in neighborhoods with higher Transit Scores1.

In multivariable analyses adjusting for demographics and comorbidities (age, gender, race/

ethnicity, BMI, tobacco smoking, diabetes, hypertension, chronic kidney disease, chronic lung

disease), certain elements of the neighborhood built environment remained significantly
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associated with the IRR of hospitalization (Table 4). The IRR was higher for individuals living

in an apartment (p< 0.001), but not for the other density and crowding variables (e.g., percent

overcrowding). Specifically, the IRR of hospitalization was 14.2% higher for people living in a

multi-family building than for people in a single-family unit. Living in a neighborhood with

higher PM2.5 levels was associated with a higher IRR of hospitalization (p< 0.001). None of

Table 2. Demographic and clinical characteristics for the final cohort.

Overall

(N = 18,042)

Hospitalized

(N = 5,239)

Not Hospitalized

(N = 12,803)

p-value

Age in years (Median, IQR) 43, 31–57 50, 35–64 41, 30–54 <0.001

Gender (n, %)* <0.001

Women 10,508 (58.2) 2,920 (55.7) 7,588 (59.3)

Men 7,534 (41.8) 2,318 (44.3) 5,216 (40.7)

Race/Ethnicity (n, %) <0.001

Non-Hispanic White 8,513 (47.2) 2,011 (38.4) 6,502 (50.8)

Non-Hispanic Black 1,220 (6.8) 518 (9.9) 702 (5.5)

NH American Indian/Alaska Native 59 (0.3) 19 (0.4) 40 (0.3)

Hispanic/Latinx 7,421 (41.1) 2,369 (45.2) 5,052 (39.5)

Non-Hispanic Asian 618 (3.4) 252 (4.8) 366 (2.9)

NH Native Hawaiian/Pacific Islander 48 (0.3) 24 (0.5) 24 (0.2)

NH Mixed Race 163 (0.9) 45 (0.9) 118 (0.9)

BMI (Median, IQR) 29, 25.2–33.8 30, 26.1–35.3 28.6, 24.9–33.3 <0.001

Tobacco Use (current) (n, %) 2,487 (13.8) 627 (12) 1,860 (14.5) <0.001

Medical Conditions (n, %)

Diabetes 2,054 (11.4) 850 (16.2) 1,204 (9.4) <0.001

Hypertension 3,427 (19) 1,158 (22.1) 2,269 (17.7) <0.001

Chronic Kidney Disease 838 (4.6) 390 (7.4) 448 (3.5) <0.001

Chronic Lung Disease 2,636 (14.6) 1,083 (20.7) 1,553 (12.1) <0.001

Notes:

* None of the individuals in the cohort had evidence of identifying as transgender, nonbinary, or gender nonconforming in the EHRs. NH = non-Hispanic.

Comparisons were calculated using Mann-Whitney U tests (for continuous variables such as age and BMI) and χ 2 tests (for categorical variables). To calculate BMI, we

imputed height values for 159 people in the cohort (0.88%) for whom height data were not available (see also Section 2.1).

https://doi.org/10.1371/journal.pone.0286119.t002

Table 3. Descriptive statistics for neighborhood built environment variables for the final cohort (n = 18,042).

Variable Mean Median St. dev. Min. Max.

Residential density (households per Km2) 889.336 813.54 827.521 0.808 7488.340

Percent overcrowding (ranging between 0 and 1) 0.041 0.023 0.042 0 0.246

Living in a multi-family building (yes = 1, no = 0) 0.246 0 0.354 0 1

Percent multi-family units (ranging between 0 and 1) 0.275 0.218 0.249 0 0.992

PM 2.5 (μg/m3) 8.029 8.140 0.585 5.096 8.902

Proximity to a highway (yes = 1, no = 0) 0.289 0 0.453 0 1

NDVI greenness (number of pixels classified as green in block group) 2484.780 2483 655.591 0 6339

Park access (yes = 1, no = 0) 0.474 0 0.499 0 1

Park acreage (Km2) 0.004 0 0.008 0 0.071

Walk Score 1 (0–100 index) 42.964 43.656 24.438 0 98.027

Bike Score 1 (0–100 index) 57.458 57.583 17.707 1.045 100

Transit Score 1 (0–100 index) 34.784 37.671 17.129 0 97.205

https://doi.org/10.1371/journal.pone.0286119.t003
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the environmental amenities (parks and NDVI) showed significant protective associations, but

living within a half-mile of a park was linked with a higher IRR of hospitalization, although this

result was significant only at the 0.05 level. Results for mobility were mixed. The IRR of hospital-

ization was higher for individuals whose neighborhood had a lower Walk Score1 (p< 0.05),

lower Bike Score1 (p< 0.001), and higher Transit Score1 (p< 0.001). Incidence rate ratios

(IRRs) and significant levels for the control variables are in S3 Table in S1 Appendix.

Tukey-adjusted post-hoc pairwise comparisons showed that, when controlling for other

variables, non-Hispanic white people with SARS-CoV-2 were less likely to be hospitalized than

people of color (see S4 Table in the S1 Appendix). Also, to test whether adding the built envi-

ronment variables to the individual-level comorbidities and demographics improved the

model fit, we ran a Poisson regression with robust standard errors that only included the con-

trol variables. The model with the built environment variables had a lower Akaike Information

Criterion (AIC = 21,934.92) and a lower Bayesian Information (BIC = 22,761.77) than the

model without such variables (AIC = 21,952.56, BIC = 22857.41). This shows that adding the

built environment variables to the individual-level comorbidities and demographics improved

the model fit, albeit only slightly.

In subgroup models of non-Hispanic white and Latinx subsamples (Table 5 and S5 Table in

the S1 Appendix), we observed some variations in the significant associations and effect sizes.

Higher PM2.5 levels had stronger associations with hospitalization in the Latinx subsample

(IRR = 1.347, 95% CI = 1.289–1.407) than in the non-Hispanic white subsample (IRR = 1.087,

95% CI = 1.041–1.136), and the two confidence intervals did not overlap. Also, a lower Walk

Score1 was associated with a higher incidence rate ratio (IRR) of hospitalization for Latinx

Table 4. Poisson regressions with robust standard errors predicting the incidence rate ratios (IRR) of hospitalization among individuals with positive SARS-CoV-2

PCR tests.

Univariate models (all cases) Multivariate model (all cases)

Variable IRR 95% CI p-value IRR 95% CI p-value

Density and crowding
Residential density 0.990 0.968–1.012 0.384 0.973 0.938–1.009 0.145

Percent overcrowding 1.173 1.151–1.956 <0.001 1.014 0.983–1.046 0.383

Living in a multi-family building 1.170 1.102–1.242 <0.001 1.142 1.075–1.213 <0.001

Percent multifamily units 1.018 0.996–1.041 0.111 0.975 0.943–1.009 0.151

Environmental hazards
PM2.5 1.244 1.210–1.279 <0.001 1.190 1.151–1.230 <0.001

Proximity to a highway 1.031 0.981–1.084 0.226 0.955 0.905–1.007 0.087

Environmental amenities
NDVI 0.964 0.943–0.986 0.001 0.998 0.973–1.022 0.850

Park proximity 1.022 0.977–1.070 0.336 1.056 1.001–1.115 0.045

Park acreage 0.986 0.964–1.009 0.249 0.980 0.952–1.009 0.177

Mobility
Walk Score 1 1.004 0.982–1.027 0.713 0.957 0.919–0.996 0.033

Bike Score 1 0.984 0.962–1.006 0.150 0.919 0.883–0.956 <0.001

Transit Score 1 1.078 1.054–1.102 <0.001 1.075 1.030–1.123 <0.001

Intercept 0.274 0.195–0.385 <0.001

Notes: (a) n = 18,042. (b) IRRs in bold are significant at the 0.05 level. (c) The multivariate (adjusted) model controls for age, gender, race/ethnicity, BMI, tobacco

smoking, diabetes, hypertension, chronic kidney disease, chronic lung disease, percent housing burdened households, percent essential workers, and percent essential

workers commuting via transit. (d) For the multivariate model, Akaike Information Criterion = 21,935. (e) The multivariate model is a spatial filtering model that

eliminates spatial autocorrelation. (f) p values and 95% confidence intervals are calculated with robust standard errors. (h) All continuous variables were standardized.

https://doi.org/10.1371/journal.pone.0286119.t004
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individuals, but not for non-Hispanic white individuals. On the contrary, a lower Bike Score1,

higher Transit Score1, higher percent of overcrowded units, and living within >½ mile from

a park (within 800 m) were all associated with a higher IRR of hospitalization in the non-His-

panic white sample, but not in the Latinx sample. Finally, living in a multi-family unit was

associated with a higher IRR of hospitalization in both samples, but the effect size was larger in

the non-Hispanic white cohort.

4. Discussion

4.1. Summary of findings

Among a cohort of more than 18,000 individuals with SARS-CoV-2 infection, living in a

multi-family building, living in a neighborhood with higher PM2.5 levels, and living in a neigh-

borhood with lower walkability and bikeability were associated with a greater incident rate

ratio (IRR) of hospitalization, even when controlling for socioeconomic vulnerability and indi-

vidual-level demographic and medical characteristics. NDVI was associated with a lower IRR

of hospitalization in univariate models but the association did not remain significant in multi-

variable models. Also, in multivariate models, living within a half-mile of a park was associated

with a higher IRR of hospitalizations. And although walkability and bikeability were observed

to be protective against hospitalization, transit score–a marker of transit quality and access–

was associated with a higher IRR of hospitalization.

When stratifying by race and ethnicity, we observed notable variations in the results for the

Latinx and non-Hispanic white cohorts. For example, although higher PM2.5 was significantly

Table 5. Poisson regressions with robust standard errors predicting the incidence rate ratios (IRR) of hospitalizations for individuals who tested positive for SARS-

CoV-2, broken down between two samples: Non-Hispanic white and Latinx people.

Non-Hispanic white (n = 8,513) Latinx (n = 7,421)

Variable IRR 95% CI p-value IRR 95% CI p-value

Density and crowding
Residential density 0.956 0.905–1.010 0.109 0.985 0.933–1.040 0.589

Percent overcrowding 1.064 1.004–1.129 0.036 1.005 0.948–1.065 0.878

Living in a multi-family building 1.265 1.143–1.401 <0.001 1.126 1.017–1.247 0.022

Percent multifamily units 0.978 0.926–1.032 0.414 1.010 0.957–1.066 0.719

Environmental hazards
PM2.5 1.087 1.041–1.136 <0.001 1.347 1.289–1.407 <0.001

Proximity to a highway 1.009 0.921–1.105 0.844 1.025 0.936–1.122 0.601

Environmental amenities
NDVI 1.013 0.978–1.049 0.474 0.968 0.934–1.002 0.065

Park proximity 1.144 1.046–1.251 0.003 0.964 0.882–1.054 0.425

Park acreage 0.958 0.917–1.002 0.06 1.005 0.962–1.051 0.817

Mobility
Walk Score 1 1.007 0.940–1.078 0.848 0.874 0.816–0.935 <0.001

Bike Score 1 0.915 0.860–0.974 0.005 0.971 0.913–1.034 0.362

Transit Score 1 1.112 1.041–1.187 0.002 1.018 0.953–1.087 0.604

Intercept 0.196 0.180–0.213 <0.001 0.235 0.216–0.256 <0.001

Notes: (a) IRRs in bold are significant at the 0.05 level. (b) The multivariate models control for age, gender, BMI, tobacco smoking, diabetes, hypertension, chronic

kidney disease, chronic lung disease, percent housing burdened households, percent essential workers, and percent essential workers commuting via transit. (c) Non-

Hispanic white model, Akaike Information Criterion = 9385.9. Latinx model, Akaike Information Criterion = 9453.6. (d) These models are spatial filtering models that

eliminate spatial autocorrelation. (e) p-values and 95% confidence intervals are calculated with robust standard errors.

https://doi.org/10.1371/journal.pone.0286119.t005
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associated with a higher IRR of hospitalizations in both cohorts, the effect size was much larger

for the Latinx than the non-Hispanic white cohort. This suggests that reducing harmful emis-

sions might provide greater benefits to Latinx populations, a group that was hospitalized at 2.8

times the rate of non-Hispanic white populations in the U.S. during the first year of the

COVID-19 pandemic [26]. In contrast to PM2.5 levels, markers of density and overcrowding

were more strongly associated with a greater IRR of hospitalization among non-Hispanic

white than Latinx individuals with SARS-CoV-2 infection, when controlling for other factors

as described above. Similarly, living within a half-mile of a park was associated with a higher

IRR of hospitalization among non-Hispanic white people but not among Latinx people. The

reasons for the differences in these associations between the two cohorts are unclear.

Of the environmental hazards we studied, higher PM2.5 levels were most consistently asso-

ciated with a greater IRR of hospitalization. This finding supports the results of previous work

showing that long-term exposure to air pollution–especially PM2.5 –is associated with more

SARS-CoV-2 transmission, more severe COVID-19, and higher COVID-19 mortality

[13,15,73]. Given the well-established link between pollution and cardiovascular disease [74], a

known risk factor for severe COVID-19 [7], it is possible that undiagnosed cardiovascular dis-

ease or unrecognized cardiovascular damage associated with higher PM2.5 levels drives poorer

outcomes among those who become ill with COVID-19. Long-term PM2.5 exposure can also

lead to chronic respiratory stress, which in turn can render individuals susceptible to compli-

cations from COVID-19 [75]. A prior study found that individuals with chronic lung disease

who were exposed to higher levels were PM2.5 were significantly more likely to be hospitalized

from COVID-19, suggesting an exacerbation of the underlying disease [76]. PM2.5 and other

forms of air pollution may also worsen disease severity by increasing epithelial permeability,

increasing expression of ACE2 receptors in the airways, and causing oxidative stress, enhanced

inflammatory responses, and immune dysregulation [77–79]. Most of these studies have relied

on ecological data, which, although informative, have several limitations. Only a handful of

studies in the US have relied on individual-level patient data [16,76]. One found that the associ-

ation between PM2.5 and COVID-19 hospitalizations was contingent on patients having pre-

existing asthma or chronic pulmonary disorder [76]. Similar to our results, Bowe and colleagues

found that the annual average PM2.5 levels in 2018 were linked with an increased risk of hospi-

talization among a very large cohort of United States Veterans and that Black individuals were

more susceptible to the effect of PM2.5 on COVID-19 illness than white individuals [16].

Our study adds strong evidence of associations between air pollution and COVID-19 sever-

ity, particularly among Latinx populations. These findings are particularly important given

that people of color and socioeconomically disadvantaged groups in the United States are sys-

tematically exposed to higher air pollution levels [71,80], and that there exist substantial dis-

parities in the risk of COVID-19 infection by race/ethnicity and socioeconomic conditions

[81]. The confluence of environmental injustices with infection rate disparities and disease

severity among people of color illustrates the compound effects of these forces on health

outcomes.

Our findings on mobility partially align with those of previous work [20,82,83] showing that

living in more walkable and bikeable neighborhoods lowers the IRR of hospitalization among

people with COVID-19. A recent study by Sallis and colleagues showed that being physically

inactive was linked to higher risks of hospitalization, admission to an Intensive Care Unit, and

death [84]. Thus, we hypothesize that living in places conducive to walking and/or biking leads

to more physical activity, which may be protective against those outcomes. For unclear reasons,

the effects of bikeability and walkability varied significantly between the two sub-cohorts, sug-

gesting the need for further research into whether these scores may reflect different experiences

for racial and ethnic subgroups in the Denver metropolitan area and elsewhere.
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We noted a harmful association between better transit access and hospitalization risk.

Wang and colleagues theorized that transit riders might have a higher risk of infection due to

possible prolonged exposure to SARS-CoV-2 in small indoor settings [20]. Although this the-

ory would not fully explain our findings on the risk for hospitalization among those who con-

tracted SARS-CoV-2, it is possible that transit riding may have other unidentified health risks

or that people who continued to use public transit during the first year of the COVID-19 pan-

demic may have had health conditions not captured in our study [85]. Like the bike and walk

score results, associations with transit scores varied between the subgroups, limiting the gener-

alizability of the finding at this time.

We also found that living within a half-mile of a park was associated with a higher IRR of

hospitalization for people with SARS-CoV-2 infection in the entire cohort and the non-His-

panic white subsample, but not the Latinx subsample. These findings are unlike those of previ-

ous studies, which largely found that higher densities of green space were associated with

COVID-19-related mortality and hospitalization risks [16–21]. The reasons for these differ-

ences are unclear, but they might be due to our inclusion of many other built environment var-

iables in our model, including markers of environmental hazards, mobility, and density and

crowding, which other studies on the association between green space and COVID-19 out-

comes rarely considered.

4.2. Strengths, limitations, and future research

Our study has several strengths. Importantly, we used individual-level demographic and clini-

cal data for>18,000 individuals with SARS-CoV-2 infection and linked each case to secondary

data sources, using the geocoded addresses to measure neighborhood built environment

domains and additional control variables describing socioeconomic factors. To our knowl-

edge, this is one of the first and largest studies to utilize individual-level data to determine

environmental correlates of COVID-19 disease severity. Further, we considered how associa-

tions between neighborhood built environment and COVID-19 hospitalization differed

between Latinx and non-Hispanic white people, and found notable differences in such associa-

tions, such as the larger impact of particulate matter in the Latinx cohort.

Our study also has several limitations. First, we used an observational design, which may be

subject to residual confounding due to unmeasured covariates or missing data. We tried to

mitigate this concern by including a wide range of individual-level covariates but did not have

individual-level data describing socioeconomic status, and therefore we used such data at the

census block group level. Certain comorbid conditions may not have been documented in the

EHR leading to possible misclassification. In particular, chronic lung disease encompasses a

range of conditions with potentially differing susceptibilities to complications resulting from

environmental exposures such as particulate matter. Second, the large number of records cen-

sored from the cohort due to missing weight/BMI values or mobility score values (e.g., Transit

Score1) may have skewed the cohort toward those with more healthcare utilization due to

higher healthcare needs. Third, the reason for hospitalization was not available in the dataset,

and therefore some patients might have incidentally been positive for SARS-CoV-2 upon

screening but were not hospitalized because of COVID-19. The Infection Prevention teams at

DH and UCH report that asymptomatic SARS-CoV-2 infections typically represented less

than 5% of hospitalized cases in 2020, but the exact prevalence of this scenario in our cohort is

unknown.

Fourth, we relied on PM2.5 concentrations for the year 2016. It is possible that in response

to lockdown policies during the pandemic, fluctuations and short-term PM2.5 concentrations

may have differed from 2016 levels. Fifth, and relatedly, some of the data sources we used do
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not completely align temporally; for example, demographic data are for 2015–2019, hospitali-

zation data are for 2020, and data about walkability, bikeability, and transit access are for 2021.

Sixth, we did not include measures of park quality because data needed to model quality were

not available homogeneously across the various jurisdictions. Seventh, the results of the two

subgroup analyses for non-Hispanic white and Latinx individuals might include inflated false

positive rates [86]. Yet many statistically significant associations for key variables (e.g., PM 2.5)

in the two subsamples were at the 0.01 levels or lower, which strengthens our confidence in the

accuracy of the results. Finally, our dataset included all SARS-CoV-2-positive results from the

two largest public hospitals in the Denver metropolitan area and thus accounted for many, but

not all, of the region’s cases. It is possible that individuals who tested for SARS-CoV-2 outside

of these healthcare systems may be healthier and differently impacted by the environmental

variables assessed in this study.

Future research could build on our line of inquiry in several ways. Reproducing these

results in other jurisdictions will be critical to understanding the generalizability and validity

of our findings, particularly in jurisdictions with different racial and ethnic distributions. Fur-

ther, environmental exposures describing only one’s neighborhood fail to represent other

places where individuals spend significant time, an issue defined as the neighborhood effect

averaging problem (NEAP) [87]. Therefore, subsequent studies are also needed to examine the

effects of environmental exposures in the locations where one works or partakes in leisure.

Finally, future studies could assess the effects of different components of air pollution, includ-

ing different particulate matter sizes.

4.3. Implications for urban planning, urban policy, and public health

The findings of this study show that certain neighborhood built environment characteristics

are associated with increased or decreased IRR of being hospitalized among individuals who

tested positive for SARS-CoV-2. These associations are statistically significant even when con-

trolling for several demographic characteristics and comorbidities. As such, these findings

could be used to inform future public health and urban planning interventions that could help

limit the severity of COVID-19 and other airborne infectious diseases.

Our results for density and crowding could help direct public health vaccination and testing

efforts to areas with a higher prevalence of multifamily housing. These efforts could mitigate

the risk of severe disease through the prevention of infection and augmented immunity from

vaccines, and by encouraging earlier access to therapeutics for those who test positive for

SARS-CoV-2 [88–90]. Living in a transit-rich neighborhood was also associated with a higher

risk for COVID-19 hospitalization, so public health efforts targeting these neighborhoods

could be helpful, as could additional public health measures like masking and educational mes-

saging on transit itself.

Ambient PM2.5 exposure is an increasing concern worldwide due to its association with

numerous poor health outcomes [91–93] and its disproportionate effect on people of color

[94–96]. Our findings underscore the urgency of lowering PM emissions to improve public

health, especially respiratory-related diseases. Ways to reduce PM emissions include facilitat-

ing opportunities for public transport or active transportation, controlling industrial sources,

limiting highway expansions, and increasing green space [97]. To have the greatest impact,

principles of environmental justice should be at the core of future planning efforts.

Our findings for mobility suggest the need to make existing neighborhoods more walkable

and bikeable, and to build new neighborhoods conducive to walking and biking, investing in

pedestrian and cycling infrastructure and promoting mixed land uses and residential densities.

Since walkability was particularly protective for Latinx individuals, planners should prioritize
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pedestrian investments in majority-Latinx neighborhoods. Walkability investments in com-

munities of color should follow a holistic environmental justice approach with meaningful

community engagement in planning [98]. In this context, investments need to ensure that

increased walkability and bikeability do not result in the over-policing of people of color, as

research has shown disproportionate cycling citations in Black and Latinx communities [99].

5. Conclusion

This study contributes to the literature on the associations between the built environment and

COVID-19 outcomes by using a holistic definition of neighborhood built environment,

leveraging a large cohort with individual-level demographic and comorbidity data, and focus-

ing on hospitalizations (a marker of severity). Of more than 18,000 individuals with SARS-

CoV-2 in our cohort, those who lived in multi-family housing units and those exposed to

higher levels of PM2.5 were at higher risk of hospitalization, even when controlling for estab-

lished risk factors such as age, weight, and medical conditions. Higher walkability, higher bike-

ability, and lower transit access were associated with a lower IRR of hospitalization. Results for

sub-samples of Latinx and non-Hispanic white individuals showed significant variations,

including higher PM2.5 levels being particularly harmful to Latinx individuals.

Many of the neighborhood characteristics associated with lower COVID-19 hospitaliza-

tions in our study–more walkability and bikeability and less pollution–are considered best

practices in urban planning to improve public health, boost livability, and address climate

change [100,101]. By heeding lessons learned from COVID-19, we may see public health and

environmental benefits that extend well beyond the improved control of future respiratory

pandemics.
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